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Interest in the interaction of low-energy (on the order of an electron volt) atomic par- 
ticles has been determined by a need to predict the changes in the properties of surfaces sub- 
jected to bombardment by relatively slow atoms and ions. The demands of practical and experi- 
mental work give rise to the theoretical problem of evaluating the probabilities of sticking 
or reflection of an atom as it collides with a surface and the sputtering coefficients for 
the surface atoms. Extensive studies have been made of the response of a crystalline surface 
to the initial impulse transmitted by an incident atom [1-4]. The bombardment of a heated 
surface is of particular interest. Various features of the interaction of atomic particles 
with thermally excited surfaces have been treated from one or another standpoint in the lit- 
erature [5-8]. Some approximate considerations of relevance to this problem are given here. 
They are based on a comparison between the contributions of the lattice response to the 
initial impulse and the thermal motion of its atoms, and are not associated with a particular 
crystalline structure. The specific properties of the bombarded sample appear as parameters 
of relationships which are calculated independently. 

The physical essence of a collision between a slow atom and a heated surface lies in a 
superposition of a nominally determinate process, stimulated by the impact of the incident 
atom, and the statistically determined vibrations of the (lattice) atoms. At high temperatures 
several general considerations may be introduced, which describe the motion of the atoms and 
asymptotically approach the exact relationships as the temperature increases. 

As a rule, the layer of a crystal immediately adjacent to the surface has the most de- 
fects. Because of this, a large number of strictly local vibrational states develop, each 
of which belongs mainly to the defect atom itself. The square of the amplitude of the vibra- 
tions of such an atom in the e direction is determined by the quantity ~=~=7~=, where the de- 
pendence on the quantum number n~ follows from the correspondence principle at high tempera- 
tures, the value of y~ for each of these atoms depends on the specific conditions under which 
the atom is found, and ~ is the frequency of the local vibration, The distribution function 
of the displacements and velocities of such an atom is given approximately by 
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Replacing the summation in this equation by an integral gives 
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i . e . ,  a G a u s s i a n  d i s t r i b u t i o n  o f  d i s p l a c e m e n t s  and v e l o c i t i e s  where f ( x a ,  Va) = f z ( x a ) f 2 ( v ~ ) ,  
which corresponds "on the average" to the absence of correlations between the displacements 

and velocities. 

In a similar way, or by calculating the appropriate correlation functions, it can be 
established that the coordinate-velocity distribution function may be factored for zone vibra- 
tions as well; that is, this factorization is a general property of high-temperature atomic 

vibrations. 

These considerations can be used to introduce a simple distribution function for the 
displacements of the incident atom relative to its position determined by the evolution of 
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the process following the beginning of the interaction of this atom with the surface. This 
function is a superposition of the distributions defined by the dynamic effect of all the 
atoms in the crystal and has the form 

/ (x) = exp 2<~ > W2-~ <z2>. (3) 

The mean square <x~> depends on the time and is calculated as follows: 

X2 �9 2 

Here the summation over p corresponds to an enumeration of the the atoms in the crystal; 
<x~> and <v~> are the mean squares of the displacements and velocities of atom p and 
are calculated by standard methods [9]; the functions ~and ~ describe the dynamic effect 
of the initial displacement and of the initial velocity, respectiveiy, on the motion of the 
incident atom along the normal to the surface, that is, they are the laws of motion of the 
atom of interest for unit displacements and velocities and have been sought in a number of 
previously published papers ([1-4], etc.). 

As t increases, the quadratic dispersion increases from zero at t = 0 to some limiting 
value corresponding to "thermalization" of the incident atom. The duration of the thermali- 
zation stage is on the order of a single cycle for condensation of the inherent lattice and 
can be fairly long if the condensing atom is much different from the atoms of the crystal. 
The quantity <x~(t)> plays the role of a temperature (with the appropriate scale). 

Equations (3) and (4) can be used to find several properties of collisions between slow 
atoms and surfaces which are generally valid for different crystalline structures�9 If the 
energy of the thermal vibrations is much less than the energy of an incident atom and the 
cutoff energy for the interaction, then separation of an atom will occur within some time 
interval of the moment t i when the displacement for separation of the given atom, calculated 
neglecting the thermal motion, is maximal (several maxima may contribute). Near this maxi- 
mum the atom's motion relative to its nominal position is similar to harmonic motion at a 
frequency ~ which is less than, but of the same order as, the limiting frequency of vibration 
of an atom (this behavior is found by analyzing a number of nonstationary problems). This 
harmonic law can be arbitrarily extended to times far from ti, that is, to times which do not 
contribute significantly to the probability of separation. The component of the~total motion 
determined by the thermal motion of the crystal is also vibrational in nature and can be 
approximated by a sinusoidal dependence at roughly the same frequency with a random amplitude 
a and random phase shift 8 relative to the function given above. Separation of an atom occurs 
when the amplitude of the resultant vibration exceeds some value b corresponding to the poten- 
tial cutoff or, in other words, reaches an arbitrary boundary of the region of interaction 
between the incident atom and the crystal surface. In view of the above remarks, the phase 
shift of the resultant vibration relative to the initial forced impulse need not be large. 
Elementary calculations yield 

x~ + 2xma cos~ + a~>  L!. (5) 

This inequality is generally satisfied for a limited range of variation in 8. The ratio 
of this interval to 2v is indeed, the probability of separation for given values of Xm, a, 
and b. Thus, we have 

W = O ,  a < b - - x ~ ,  

$ b ~ - -  a ~ - -  x ~  
W (a) = -- arccos - (6) a ~a , b + x m > a > b - - x ~ ,  

W(a)=l, a > b §  

(the last of these three cases does not fully meet the above assumptions; however, under the 
conditions being examined here, the extremely large values of a hardly contribute). 

The conditional probability of separation near the i-th "danger point" is found by av- 
eraging the function W(a) of Eq. (6); i.e., 

W i = ~ /  K~ fW(a)  exp 2<E~> da, 
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where K is the effective rigidity such that <E+> = K<x+'(t+)>. 

A calculation using Eq. (7) in the approximation 

K +. <E;> << ~ (b -- x~+) +0, ~f +~+, 

yields 
K ( b - - , , , + )  ~" 
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Similarly, for Xmi > b we obtain 

i rC(xmf-~') ~ 
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If, however, Xmi--~b, then 

(8) 

(9) 

i > w, >~ i/~. (io) 

Equations (7)--(10) can be used to determine the conditional probabilities for all the 
extremal distances between the atom and the nominal crystal surface. If the dominant contri- 
bution is associated with one such maximum, then the separation probability for the given im- 
pact parameter W is equal to the corresponding value of W i. If, however, several maxima make 
significant contributions, then 

i-l 

w = ~ w+H(1 - wj). (11) 
i=l j=t 

Equations (7)--(11) determine the continuous variation in the probability W with changes 
in the incident particle velocity and temperature. It is also evident that for relatively 
low incident velocities (x m < b), the probability of separation is increased by heating the 
surface, while for relatively large velocities (x m > b) the probability is decreased, and 
that the role of the temperature is greatest when the condensing atom is identical to the 
crystal atoms. The observed separation probability is an average of Eq. (Ii) over the dis- 
tribution of collision parameters. 

It is worth emphasizing that the preceding approach by no means ignores the collective 
excitations in the crystal. The functions ~ and ~ in Eq. (4) are sums along the normal of 
both short- and long-wave vibrations. However, explicit representations of ~ and ~ as ex- 
pansions over vibrations with fixed frequencies are not needed here. These dependences can 
be found independently (see, for example, [1-4]). 

The breaking away (separation) of an atom from the surfance leads to distortions in the 
velocity and displacement distribution of the atoms near the separation point. Because of 
this fact, the above equations are valid only over the time interval in which the incoming 
atom interacts with the surface. Thus, the possibility of repeated capture of an atom that 
has broken away is assumed to be negligiblel In a three-dimensional medium, where the atoms 
are held on the surface by both longitudinal and transverse forces, repeated capture is un- 

likely. 

Here it is also assumed that no other atom comes into contact with a particular part of 
the surface before a thermodynamic equilibrium distribution is reestablished. Given that the 
relaxation time is on the order of the vibrational period of the atoms (about 10 -13 sec), it may 
be concluded that the system will be able to relax to an equilibrium state for any reasonable 
intensity of bombardment. The conditions for applicability of Eq. (Ii) are also independent 
of the way the atoms move after breaking off in some cycle of the vibrations. 

It should also be pointed out that Eqs. (8) and (9), which were written under the assump- 
tion that the thermal displacements are small compared to the maximum displacement produced 
by the impact of an incident atom, have a wider range of applicability than permitted by the 
harmonic approximation. The motion of an incident atom along the normal to the surface is 
given in general by some function 

z(O = F{ t ,  ~ (0 )  . . . .  xp~(O), %~ (0)...}, (12) 
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where x0(0) is a set of initial data determining the motion xo(t) of a particular atom assum- 
ing that the thermal vibrations can be neglected. Including the relative smallness of the 
contribution of the initial thermal displacements of the atoms in the crystal for times near 
the "danger point," Eq, (12) can be rewritten in the form 

x (t) == x o (t) 7 '  ~,~I]~, ] OF (t' Z[' (0) ~X ~ . . . .  (0) O, 0 " ' ' )  Xpcz (0) 2 F OF (L xo(O )Ovpc z . . . .  (0) O' 0 " ' ' )  Vp" (O) l'j (13)  
p ,~  t 

Comparing Eq. (13) with the corresponding exact harmonic expression 

x (t) == 370 (t) -'i- E { f'Dpo~Xp~ (0) --i- ~po~Vpo~ (0)} ( 14 )  

shows that Eqs. (13) and (14) differ only by some independently determined functions. Thus, 
in this situation, anharmonocity leads only to a renormalization of the functions ~ and ~ , 
that is, ultimately to a change in the scales for the quantitites <x~(t~)> and <Ei> used 
above, with retention of all the equations containing these quantities. Note that here it 
is assumed that the anharmonic effects are assumed small only for the equilibrium thermal 
vibrations. The motion of the atoms may be highly anharmonic following the impact of a fast 
incident atom. 

These results are applicable both to condensation and to sputtering of atoms by relative- 
ly slow atomic particles. In the latter case <Ei> must be replaced by a constant that coin- 
cides with T in the harmonic limit. Equations (8) and (9) determine the role of the energy 
of the incident particles Xm, the characteristics of the bombarded surface K and b, and the 
temperature <Ei) , and can be used in a wide variety of real physical situations. 
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